analyses are indicated only by symbols of the elements, analytical results for those elements were within $\pm 0.4\%$ of the theoretical values.

(+)-3-Methoxy- 6α -hydroxy- $4,5\alpha$ -epoxy- Δ^7 -N-methylisomorphinan (trans-Codeine) (II).—A mixture of I (2.8 g), AcOK (7 g), H₂O (2 ml), and DMF (40 ml) was refluxed for 23 hr and evaporated in vacuo. The residue was dissolved in H₂O, basified with NH₄OH, extracted with CHCl₃, dried, and evaporated. Conversion of the residue into the picrate in EtOH gave IIpicrate (1.26 g, 53.2%), mp 244-245° dec (from Me₂CO-EtOH). This was identical with an authentic sample.

3-Methoxy-6-oxo-4,5 α -epoxy-N-methylisomorphinan (trans-Dihydrocodeinone) (IV) Picrate.—A mixture of III (from 0.35 g of the hydrochloride), Al(O-t-Bu)₃ (0.35 g), benzophenone (1.7 g), and C₆H₆ (5 ml) was refluxed for 20 hr under N₂. The mixture was acidified with dil H₂SO₄, the H₂O layer was separated, basified with 10% NaOH, extracted with CHCl₃, dried, and evaporated. The residue was chromatographed on Al₂O₃ and eluted with C₆H₆-Et₂O (9:1). The eluate was converted into the picrate and recrystallized from EtOH-Me₂CO to give IV-picrate (0.06 g, 11%), mp 220-230° dec, ir, 1723 cm⁻¹. Anal. (C₂₄H₂₄N₄O₁₆) C, H, N. The free base was crystallized from Et₂O, mp 98–99°, identical with an authentic specimen. (mp, nmr, and tlc).

Acknowledgment.—The authors express their gratitude to Dr. Everette L. May, National Institutes of Health, for his aid in determination of the analgetic activity. Thanks are also due to Mr. M. Yamazaki, Dr. N. Sugimoto, and Dr. S. Sugasawa, Professor Emeritus of Tokyo University, for their interest and encouragement.

Analeptics. 1-Formimidoylindolines

YAO-HUA WU,¹ WALTER G. LOBECK, JR.,

Department of Chemical Research,

AND JOHN W. KISSEL

Department of Pharmacology, Mead Johnson Research Center, Evansville, Indiana

Received March 23, 1970

Although the value of analeptics in the treatment of CNS depression is uncertain,² bemegride has been generally recognized as useful in treating patients with severe barbiturate intoxication. In the course of investigation of amidines as medicinals, we discovered that certain 1-formimidoylindolines (I) have analeptic effects comparing favorably with bemegride. We wish to report the results of analeptic screening on these compounds. In I, X represents H, Ac, and NO₂ groups;

and R_1 , R_2 represent H, alkyl, and alkylamino groups. R_1 and R_2 may join together to form a cyclic moiety.

These compounds were synthesized by the action of an amide-POCl₃ adduct³ on an appropriate indoline. Their physical constants are tabulated in Table I.

$$R_{1}CONHR_{3} + POCl_{3} \rightarrow \begin{bmatrix} O \ POCl_{2} \\ B \ + \\ R_{1}C - - NHR_{2} \end{bmatrix} Cl^{-} \xrightarrow{X} I$$

Biological Data and Correlations. Analeptic Activity.—With few exceptions, the compounds listed in this report were screened for analeptic activity by both: (1) the antagonism of pentobarbital in cats and (2) the antagonism of chloral hydrate in mice.

Pentobarbital Antagonism.—Cats of either sex, previously equipped with chronically indwelling iv cannulas, were individually placed into an observation cubicle (60 \times 60 \times 60 cm) and allowed to move about freely at the end of a leash. A dose of 12 mg/kgof aq pentobarbital sodium was infused at the rate of approximately 2 mg/kg per min via tubing contained in the leash. One-half hour after the start of this infusion the animals were in a stage of light anesthesia characterized by unconsciousness, immobility, relaxed nictitating membranes, and irresponsiveness to handling, but active pinnal, palpebral, and paw-pinch withdrawal reflexes. At this time the test compound in aq solution was infused in a concentration of 10 mg/ml and at a rate of 0.2 ml/min until (a) consciousness was restored, (b) a total of 25 mg/kg of test compound was administered, or (c) mounting toxicity interfered. Recovery of consciousness was recognized by the presence of alertness to surroundings, including the ability of the eyes to follow the movement of a nearby object. and attempts to change to an upright position. Results are presented in Table I. All compounds were tested in two cats.

Chloral Hydrate Antagonism.—Groups of 20 fasted, male, albino mice were administered an oral dose of 20 mg/kg of the test compound followed immediately by an ip dose of 300 mg/kg of chloral hydrate. If the duration of the ensuing hypnosis was 50% or less of that produced in saline-treated controls additional doses were administered and the dose which would reduce sleeping time by 50% was determined graphically from a dose-response curve. Results appear in Table I. Three compounds (8, 13, and 17) approximated the analeptic potency of bemegride in this test.

Discrepancies between the results of these two tests may result from the chemical difference in the hypnotics themselves as well as the species in which they are employed. In addition, the infusion technique used in cats requires that the test compound be prompt in exerting its analeptic effect before its toxic actions intervene. Indeed, convulsant stimulation is a common toxic manifestation in this series and in some cases analepsis may actually have been a result of it.

Extended testing with the more active compounds demonstrated that motor stimulation is not a necessary concomitant of analeptic action. According to an activity cage technique using rats,⁴ 2 and 8 were inactive, 6 and 13 were depressant, and 17 was mildly stimulant. Bemegride is mildly depressant to motor activity, although amphetamine is markedly stimulant.

Other Tests. Analgesia.—Thirteen compounds were screened for analgetic properties in mice by means of the phenylquinone writhing test.⁵ Compounds 6, 9, 13,

⁽¹⁾ To whom inquiries should be addressed.

⁽²⁾ F. Habn, Pharmacol. Rev., 12, 447 (1960).

⁽³⁾ H. Brederick and K. Brederick, Chem. Ber., 94, 2278 (1961).

⁽⁴⁾ J. W. Kissel, Science, 139, 1224 (1963).

⁽⁵⁾ L. C. Hendershot and J. Forsaith, J. Pharmacol. Exp. Ther., **125**, 237 (1959).

TABLE I I-Formingdoylindolines

No. I 2	X H H	Y CH NCH₄ CH NCH(CH₂)₂ CCH₂	%* sield 14.3 23.6	Recrystb solvent EtOH EtOH-E12O	Mb, °C 282-283 243.5-245	F pronula C ₁₀ (H ₁₂ N ₂ · HCH C ₁₂ H ₁₀ N ₂ · HCH 0 · 5H ₂ O	Analyses C, H, CI, Ň C, ^J H, CI, N	Pento- barbitat autagonison, cat, iv A ⁶ A	Chloral bydrate antagonism, tomos- ED ₂₀ (tog kg por Inactive at 20 >20
• •	II	$\mathbf{N} = \mathbf{CH}_3$	35.6	EtOH-P42O	228.5-230.5	CuH4N2 HCI	С, Н, СІ, Х	А	>20
ł	II	- СМПСН _а NCПа х=сп	30, 2	Heptane	142 14:3	$C_{tt} H_{ts} N_{3}$	С, Н, Х	А	>20
., .,	11	\bigcirc	28.0	EIOH-E(2O	221 222	$C_{15}H_{20}N_2$ · HCI	С, Н, СІ, Х	We	Inactive at 20
6	Н	x	21.5	EIOH~EI2O	265-266.5	C _C H _U N ₂ , HCl	С, Н, СӉ Х	Λ	>50
7	11		31.2	EtOH-Et _z O	212/214	$\mathrm{C}_{13}\mathrm{H}_{03}\mathrm{N}_{2}\cdot\mathrm{HCI}$	С, Н, СІ, Х	А	>20
ĸ	II	X H.C. CH	41.0	E1OH~Et2O	250/251	$C_{H}H_{5}N_{2}$ · HC)	С, Н, СІ, Х	А	15
ţ)	II		26.4	EtOH-Et _z O	233.5/235.5	$C_{13}H_{15}N_2 \cdot HCI$	С, Н, СІ, Х	Λ	Inactive at 20
10	H	:	I 6.0	EtOH Et ₂ O	224 - 226	C₁4H ₁₅ N₂+HCI	С, Н, СІ, Х	W.	Inactive at 20
11	П	xs	38.0	EtOH-Et ₂ O	199-201.5	$\mathrm{C}_{\mathrm{t}_{2}\mathrm{H}_{\mathrm{t}_{1}}\mathrm{N}_{2}\mathrm{S}}\text{-}\mathrm{H}\mathrm{C}\mathrm{I}$	С. Н. СІ, Х	А	Inactive at 20
12	Н	NH N	5.5	EtOH	325-327.5	$C_{tt}H_{t5}N_3\cdot HCI$	С, Н, СІ, Х	Δ	Inactive at 20
13	CH₃CO		17.6	(-Pr)2O	124.5 126	$C_{ii}H_{ib}N_2O$	С, Н, Х	Δ	[1]

>20	Inactive at 20	Inactive at 20	20	1.3 14.4 weakly active. ^d C:
V	V	А	M	A A ive. °W =
C, H, Cl, N	C, H, Cl, N	C, H, Cl, N	C, H, Cl, N	ablished. ⁶ A = act
C16H20N.O.HCI	C ₁₀ H ₁₁ N ₅ O ₂ ·HCl	C ₁₁ H ₁₃ N ₃ O ₂ ·11Cl	C ₁₄ H ₁₇ N ₃ O ₂ ·HCl	onditions were not esti
250.5 - 252.5	244-246.5	281-282	268.5 - 270.5	sulfate A Benegride a a Based on analytically pure sample. Many of these experiments were conducted only once and the optimal conditions were not established. ⁶ A = active. ^c W = calcd, 61.66; found, 62.21.
EtOH	EtOH	EtOH	EtOH	vere conducted only
13.1	30.7	42.5	22.2	e experiments v
~	=NCH ₃		~	e. Many of the
	 →CH=NCH₃ 	z		oure sample
CH ₅ CO	NO_2	NO_{t}	17 NO. dl-Amphetamine	te ide n analytically p ; found, 62.21.
14	ĨĴ	10	17 <i>dl</i> -Ampl	sulfate Bemegride ^a Based on ar caled, 61.66; fo

15, and bemegride had ED_{50} 's of 10 mg/kg sc or less, 1, 3, 7, 10, 11, 12, 14, and 16 had ED_{50} 's of 11 to 35 mg/kg sc, and 4 was inactive. Further testing in the rat of the 4 most active compounds by the tail flick method⁶ and the AgNO₃ inflamed joint test⁷ indicated that none of these compounds possessed significant analgetic properties.

The results of analeptic screening show that 8 and 13 compare favorably with bemegride as analeptics, and warrant further evaluation in the CNS area.

Experimental Section

1-Formimidoylindolines.—A solution of equimolar amounts of indoline and appropriate amide in 1,2-dichloroethane [250 ml (0.1 m)] was treated dropwise with an equimolar solution of POCl₃ in 1,2-dichloroethane [50 ml (0.1 m)] over a period of 0.5-1 hr. The mixture, after being stirred for 15 hr, was poured onto crushed ice, and made strongly basic with 20% NaOH with stirring. The organic layer was separated and extracted with dilute HCl. The acid solution was made basic with 20% NaOH and extracted again (Et₂O). The extract was concentrated to obtain the crude product. The HCl salt was prepared in the usual manner and recrystallized from appropriate solvent as shown in Table I.

Acknowledgment.—We wish to thank Messrs. L. E. Allen, T. J. Eaton, T. C. Mays, Jr., J. F. Purcell, Jr., T. F. Williams, Jr., and R. A. Winnecke for their technical assistance.

(6) W. R. Bass and M. J. Vander Brook, J. Amer. Pharm. Ass. Sci. Ed.,
41, 569 (1952).
(7) A. LaBeele and R. Tislow, J. Pharmacol. Exp. Ther. 98, 19 (1950).

Synthesis of Some Local Anesthetics

P. K. SRIVASTAVA AND P. N. SRIVASTAVA

Department of Chemistry, University of Roorkee, Roorkee, India

Received A pril 22, 1970

It has been found by many workers^{1,2} that the essential structure requirements for a local anesthetic are a lipolytic end containing an aromatic nucleus, a hydropilic end consisting of a tertiary amino group, and an intermediate alkyl or substituted alkyl chain. Compounds having a dialkylamino alkylamino group connected to an aromatic or heterocyclic nucleus as a lipolytic moiety confer greater activity and less toxicity. Therefore, it was thought worthwhile to synthesize some pyridine-2-aminoacetyl-2-aminobenzothiazole and N,-N-diethylanilino-p-aminoacetyl-2 - aminobenzothiazole derivatives, by condensation of chloroacetyl chloride with different 2-aminobenzothiazoles followed by treatment with 2-aminopyridine and p-amino-N,N-diethylaniline, respectively.

Experimental Section

Different 2-aminobenzothiazoles were prepared according to Hugershoff.³ Chloroacetyl-2-aminobenzothiazoles were prepared by known methods.⁴

Pyridine-2-aminoacetyl-2-aminobenzothiazole.—2-Chloroacetylaminobenzothiazole (5 g) dissolved in EtOH (30 ml) was added to 2-aminopyridine (3 g) dissolved in EtOH (20 ml) and the reac-

⁽¹⁾ F. F. Blicke and H. C. Park, J. Amer. Chem. Soc., 61, 1200 (1939).

⁽²⁾ A. M. Mattocks and O. S. Hutelinson, ibid., 70, 3474 (1948).

⁽³⁾ A. Hugershoff, Chem. Ber., 34, 3130 (1901); 36, 3121 (1903).

⁽⁴⁾ P. N. Bhargava and G. C. Singh, J. Indian Chem. Soc., 38, 77 (1961).